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A\ Challenges in Energy Infrastructures Safety

v High exposures of hazard, vulnerability and risk in existing energy
infrastructure/system (Grids, Power plants, Substations, Pipelines, ..);

v’ Stress on energy infrastructures are critical in most of the developing cities;

v" With a redundancy of know-how (science, technology, standards, guidelines,

etc.), strategies, policies, and resources, one would expect that energy of

infrastructure would be at low risk, with acceptable of resiliency to disasters;

Lack of systematic approach to DRR and resiliency (prevention, preparedness,
response and recovery process and actions) in energy infrastructures system,
Insufficient cooperation and integration of stakeholders and beneficiaries,
Lack of integrated look at Nexus of Energy, Water, Climate, Food, etc.

Presence of a gap between know-how, and policy and Implementation;




A\ System Model for Energy Disaster Resilience
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A\ System Model for Energy Disaster Resilience
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Resilience
» Interconnectedness and dynamism (cities are extremely complex systems!)

» Modelling suggestion: each urban sub-system resilience could be defined by

a bundle of Risk (Hazard, Exposure, and Vulnerability) + Capacity Ref.: Dr. Hooman Motamed
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Integrated Disaster Risk Information System
For Energy Infrastructure Risk Assessment

Energy Natural Hazard Data
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Human and Economic Risk Management
Loss Assessment (Insurance, Preparedness)




A\ Electric Power Grid Structure
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A\ Electric Power Grid Seismic Resilience
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lIEES : ‘ Power grid after the earthquake, PI \ Connectivity Analysis
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Powered components, PI,;: 0.5 < F; <1 | Outage components, Pl 0 < F; <1 :

| Difectoufage omponeits, Piop£ 0 S F{ S 05 | Incirectoutage components, Pl 0.5 < Fi < 1

F;: Component functionality; PI. System/Subsystem performance indicator;

Distinguishing under-service elements from each other

Separating out-of-service elements from each other by assigning different performance values, 0.5 < F < 1

by assigning different functionality values, 0 < F < 0.5

only one and several points, respectively; Leaning tower

” Two different power transmission lines suffering cable rupture at ‘ i ST
Different cost and repair time for these two lines
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Resilience,

Network Restoration Curves for the Qom Power Grid
Sarm Scenario without Considering Derating

1

o o o
~ o ©
'

o
@

Performance, P
e & & & o
- [+ w - w

o

Network Resilience Curves for the Qom Power Grid
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Electric Power Grid Seismic Resilience Functions

Earthquake of Sarm fault scenario, 20 days
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Toolbox for Gas-Combined-Cycle Powerplant Resilience
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f/@&m Toolbox for Gas-Combined-Cycle Power-plant Resilience
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%— Multi-Hazard Probabilistic Safety Analysis of Power Plants
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%— Multi-Hazard Probabilistic Safety Analysis of a PP section
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Concluding Remarks:

v

Past disasters have shown that Energy Infrastructures are at high risk
which has been endangered energy security, and economic
development considering its cascading impacts.

To secure energy security, requires an integrated approach to energy
infrastructure risk management.

Systematic approach is required for DRR (prevention, preparedness,
response and recovery process and actions) in energy infrastructures
to ensure Resilience Infrastructures.

Advising IIASA System Analysis Program, and Cooperation-
Transformative Governance group to develop Energy Infrastructure
Resilience project
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