

Direct decarbonization of natural gas: A key technology into the energy transition

Alberto Abánades

Decarbonization of our economy: a need

- The decarbonisation of our economy system is a must to avoid dramatic consequences for our Society.
- The transition must be as fast as reasonably achievable: avoiding social, economic and environmental problems, and
- A fast transition is only possible considering all the available technologies and resources.
- There is no a unique solutions, but a combination of approaches and tools to achieve the target of CO₂ emissions reduction and/or elimination.
- Hydrogen is called to play an important role as energy vector, and an important component of natural gas.

New path for processing fossil resources

Market needs

- Low-Carbon technologies for the use of fossil resources are a must in view of international greenhouse control agreements.
- **Hydrogen** is a very important feedstock in:
 - many chemical processes, as ammonia production, refineries, clean fuel production and energy storage.
 - new technological processes as iron ore reduction for the steel industry.
- **Graphitic and metallurgic carbon** is a critical raw materials in the EU.
 - China: 70% world production
 - Europe production of natural graphite powders is less than 1%.(EU Demand: 10%)
 - Required by traditional industries, as steel manufacturing, and high tech, as Li-ion batteries

CANACCORD Genuity Specialty Minerals & Metals, Nov 20th 2016, Fig. 56, page 3

Cheap and environmentally friendly graphitic carbon and hydrogen from natural gas may be of paramount importance for the competitiveness of natural gas companies.

4

Power-to-Gas concept

ETSII | UPM

MD downstream Power-to-Gas

 H_2O Industry Heat Capture CO₂ Methane decarbonization Wind Gas-fired plant $CH_4 \rightarrow C + 2H_2$ $CH_4 + O_2 \rightarrow CO_2 + 2H_2O$ $2H_2 + O_2 \rightarrow 2H_2O$ Solar PV Solid C Tank - CO₂ Gas storage Methanation $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2$ Electrolysis - H₂ Source H₂O Electric demand

Hydrogen station analysis

A hydrogen station

- Delivering 150 kg/h of hydrogen
- Working at full capacity 16 h/day.
- Total amount of carbon produced is 572 kg/h.
- The CAPEX of the installation according to our analysis is evaluated as 1.1 €W, what imply a total cost for our station of 5.5 M€, including
 - Decarbonization reactor and process equipment, including separation by membranes.
 - Hydrogen compression/buffering equipment.
- We evaluated the operational costs (OPEX) of the facility, being of the order of 4.1 €kgH, including
 - Manpower and substitution of spare parts during operation.
 - The energy for the compression stage corresponds to approximately 30% of the total cost.
 - Such analysis has been done for European cost of natural gas (11 €GJ as upper limit including taxes 2nd Sem. 2016(Eurostat 2018)). This cost is higher to that of the natural gas in international markets as it is applied to a medium consumer.
- The total levelised cost of hydrogen for a typical 20 year lifetime is 5-6 €kgH₂

MD upstream Power-to-Gas

Plasma-arc technologies

INDUSTRIALES

ETSII | UPM

US20060130400 by Bockris (2006)

- Industrial innitiatives:
 - Hvaerner black C and H2 process/SINTEF (closed)
 - GasPlas (Microwaves)
- Electricity dependant, high temperatures.

Industrial initiatives

ETCILLIDM

Hochofen

Kokerei

300.000 t/a *

INDUSTRIALES | ETSII | UPM

Industrial initiatives

Liquid metal tech. as alternative

Steinberg M. 1999. IJHE 24(8):771-777

Serban M (2007) Energy & Fuels 17: 705-713

- Carbon separation by differential density.
- Large thermal diffusivity: temperature homogenization during scalability
- Enables high temperature operation for direct cracking.

Status of development

- Our concept is on TRL 4: We have successfully operated a proof-of-concept.
- We have obtained a reasonable methane conversion (up to 80%) during a considerable period of time (10 days) at an industrially achievable temperature (1175 °C) in a one-step reactor, easy to operate and scalable from medium to high capacity demands.

Graphitic carbon production

INDUSTRIALES

ETSII | UPM

Courtesy: Nalonchem

Low density graphitic carbon

Basic process description (DECARGAS)

DUSTRIALES ETSII | UPM

Thermodynamic limit efficiency: 60.3% Estimated efficiency at industrial scale: 46.8 % (ineffiencies+separation)

International Journal of Hydrogen Energy 41 (2016) 23204-23212

Viable production of H₂ & C for the circular economy

INDUSTRIALES

ETSII | UPM

- Production cost of the two products are very competitive. At NG price of 9€/GJ, average in EU):
 - graphitic carbon @ 0,6 €/kg
 - hydrogen @ 2 €/kg

Specific process CO2 taxes are avoided.

	Drice	000	DECARCAS	DECARCAS
	Price	CO2	DECARGAS	DECARGAS
		tax=50	(€/kg)	(€/kg)
	(€/kg)	€/ton		
			Two-product	One-product
		(€/kg)	worth	worth
Metallurgical coke	0.12-0.32	0,14		
Black carbon	0.5-2		0.6	0.7-1.3
Graphitic carbon	1.5	0,7		
H2 Steam	2.21	0.27		
Reforming				
H2 Coal	3.06	0.55		0.00
gasification			2	2-3.8
H2 Biomass	3.53			
H2 electrolysis	6.17			

¹⁶

Cost

BASF Research Press Conference 2019

Is methane pyrolysis cost competitive?

Carbon sales price or cost for storage is critical

BASF

GWP in kg CO2-eq./kg H2

Life Cycle Analysis

GWP Benchmarking - Hydrogen production

International Journal of Hydrogen Energy 41 (2016) 23204-23212

Life Cycle Analysis

INDUSTRIALES

ETSII | UPM

International Journal of Hydrogen Energy 41 (2016) 23204-23212

Life Cycle Assessment (others)

INDUSTRIALES

ETSII | UPM

Abbildung 7. Ökonologie (Produktkosten und Carbon Footprint) von Technologien für die Wasserstoffherstellung auf Basis von Annahmen für den Standort Deutschland.

Chem. Ing. Tech. 2015, 87, No. 4, 1-11

Other existing solutions

• Some solution to develop natural gas decomposition has been proposed based on the utilization of plasma-arc technologies and catalysts.

Other concepts	DECARGAS advantages		
HYPRO Universal Oil Products - fluidized bed	No use of catalyst. One continuous reactor.		
reactor-Ni-Fe-Co catalyst	Easy operation.		
Boxer Industry – plasma arc	Safety problems, massive electricity		
	consumption		
BASF - fluidized bed reactor + plasma arc	No previous plasma arc section needed. Easy		
carbon particle section	operation. Homogeneous heating.		
SINTEF Kvaerner CB&H process – plasma arc	No electricity required. No safety problems		
methane decomposition.	expected due to plasma arc production		
GasPlas – heating gas by microwaves	No electricity required. Easy scale-up to high		
	capacity.		
CMAT energy solution - liquid Sn reactor, in	No use of catalysts and lower complexibility		
combination with molten salts	(only one liquid media)		
Hazer group Ltd - Iron catalyst fluidized bed	No use of catalyst. No catalyst regeneration.		
reactor			

INDUSTRIALES ETSII | UPM

Conclusions

- The transition to a low-CO2 society must be as fast as reasonably achievable: avoiding social, economic and environmental problems, and is only possible considering all the available technologies and resources.
- Innovation and technological development may convert natural gas in part of the solution to control GHG emisions in the short-medium term.
- Natural gas decarbonisation is a technology under development that can open the possibility to reduce drastically CO2 emissions in the energy sector and in many other industrial processes.
- Natural gas decarbonisation is easily introduced in the circular economy by the complete transformation of hydrocarbons into valuable products as
 - Graphitic carbon: Required by traditional industries, as steel manufacturing, and high tech, as Li-ion batteries, or graphene.
 - Hydrogen: chemical processes, as ammonia production, refineries, iron ore reduction, clean fuel production and energy storage.

- December 2018: Award of the German Gas Industry in R&D
- 2nd Price BIC EIT Raw Materials
- 2nd Price Innovatech UPM 2T Challenge 2017
- Cover New Scientist (October 2016)

Thanks for your attention!!!