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Direct decarbonization of natural gas:

A key technology into the energy
transition

Alberto Abanades
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 The decarbonisation of our economy system is a must
to avoid dramatic consequences for our Society.

* The transition must be as fast as reasonably
achievable: avoiding social, economic and
environmental problems, and

e Afast transition is only possible considering all the
available technologies and resources.

e There is no a unique solutions, but a combination of
approaches and tools to achieve the target of CO,
emissions reduction and/or elimination.

» Hydrogen is called to play an important role as energy
vector, and an important component of natural gas.
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Low-Carbon technologies for the use of fossil resources are a must in view of
international greenhouse control agreements.

Hydrogen is a very important feedstock in:

— many chemical processes, as ammonia production, refineries, clean fuel
production and energy storage.

— new technological processes as iron ore reduction for the steel industry.

Overall Natural Graphite Demand 2015-2025¢e

Graphitic and metallurgic carbon is a critical
raw materials in the EU. 2400

— China: 70% world production

— Europe production of natural graphite powders
Is less than 1%.(EU Demand: 10%)

— Required by traditional industries, as steel ot o o e wm e e s s s
manufacturing, and high tech, as Li-ion batteries =l mmone | —fme T hnopes

CANACCOREL Genuity Specialty Minerals & Metals, Nov 20™ 2016, Fig. 56, page 35
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Cheap and environmentally friendly graphitic carbon and hydrogen
from natural gas may be of paramount importance for the competitiveness
of natural gas companies. 4
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— Delivering 150 kg/h of hydrogen Carbon L,—H — L*'—I

Extraction
- WOfklng at fU" CapaCIty 16 h/day. Compression-inercooling Stages

— Total amount of carbon produced is 572 kg/h. Carl;:on
» The CAPEX of the installation according to our analysis is evaluated as 1.1 €/W, what imply a total
cost for our station of 5.5 M€, including
— Decarbonization reactor and process equipment, including separation by membranes.
— Hydrogen compression/buffering equipment.

* We evaluated the operational costs (OPEX) of the facility, being of the order of 4.1 €/kgH, including
— Manpower and substitution of spare parts during operation.
— The energy for the compression stage corresponds to approximately 30% of the total cost.

— Such analysis has been done for European cost of natural gas (11 €/GJ as upper limit including taxes 2d
Sem. 2016(Eurostat 2018)). This cost is higher to that of the natural gas in international markets as it is applied
to a medium consumer.

The total levelised cost of hydrogen for a typical 20 year lifetime is 5-6 €/kgH,

Abanades A (2018) Natural Gas Decarbonization as Tool for Greenhouse Gases Emission Control. Front. Energy Res. 6:47.
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Muradov, et al. Catalysis
Today, 2006, 116, 281 — 288

US20060130400 by Bockris (2006)

* Industrial innitiatives:
— Hvaerner black C and H2 process/SINTEF (closed )
— GasPlas (Microwaves)

» Electricity dependant, high temperatures.
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Steinberg M. 1999. IJHE 24(8):771-777 Serban M (2007) Energy & Fuels 17: 705-713

» Carbon separation by differential density.
« Large thermal diffusivity: temperature homogenization during scalability
« Enables high temperature operation for direct cracking.

12
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* Our conceptis on TRL 4: We have successfully operated a proof-of-concept.

« We have obtained a reasonable methane conversion (up to 80%) during a considerable
period of time (10 days) at an industrially achievable temperature (1175 °C) in a one-step
reactor, easy to operate and scalable from medium to high capacity demands.
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Chemical Engineering Journal 299 (2016) 192-200 13
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Thermodynamic limit efficiency: 60.3%
Estimated efficiency at industrial scale: 46.8 %
(ineffiencies+separation)

_ Hydrogen (H2) combustion

electricity

Methane Hydrogen (H2)

Methane input (CH4) g:ggg'slg .
n=46.8% \

pressure losses

losses compressor

H,+CH,+C

losses heat exchanger

International Journal of Hydrogen Energy 41 (2016) 23204-23212

15
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Cost C vs Selling price H2
. 1,4
Production cost of the two products are | —o-NG 2 £/Gj
very competitive. At NG price of 9€/GJ, » | NG 8.5 €/G)
average in EU): % o8
— graphitic carbon @ 0,6 €/kg § 06
— hydrogen @ 2 €/kg S
0,2
Specific process CO2 taxes are avoided. .
Price CO2 DECARGAS DECARGAS 2 3 4
tax=50 (E/kg) (E/kg) Hydrogen cost €/kg
(€/kg) €/ton
Two-product One-product
(€/kg) worth worth
Metallurgical coke | 0.12-0.32 | 0,14
Black carbon 0.5-2 0.6 0.7-1.3
Graphitic carbon 15 0,7
H2 Steam | 2.21 0.27
Reforming
H2 Coal | 3.06 0.55
gasification 2 2-3.8
H2 Biomass 3.53
H2 electrolysis 6.17 16

1l Cost Summary for hydrogen: https://www.ika.rwth-aachen.de/r2h/index.php/Hydrogen_Pathway: Cost_Analysis.htm|

Carbon'Majors: Accounting'for'carbon‘'and'methane'emissions'1854;2010 Methods'&'Results'Report
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BASF Research Press Conference 2019

Is methane pyrolysis cost competitive?

Production costs

100% -,
;ﬁ-’f electrolysis
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//{/f,_;'é:’/f/ %frﬁrmmg pyrolysis
W //
50% - /////////
Wy PEepireriyhiecidii
0% . ; . . Capacity of H, production plants
10 100 1000 10000 100000 m%h

Carbon sales price or cost for storage is critical
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GWP Benchmarking - Hydrogen production
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International Journal of Hydrogen Energy 41 (2016) 23204-23212
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Metalloxid-Kreisprozess
14000 mit Netzstrom
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Abbildung 7. Okonologie (Produktkosten und Carbon Footprint) von Technologien fiir die Wasserstoffherstellung auf
Basis von Annahmen fur den Standort Deutschland.

Chem. Ing. Tech. 2015, 87, No. 4, 1-11
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Some solution to develop natural gas decomposition has been proposed based on
the utilization of plasma-arc technologies and catalysts.

Other concepts

DECARGAS advantages

HYPRO Universal Oil Products - fluidized bed
reactor-Ni-Fe-Co catalyst

No use of catalyst. One continuous reactor.
Easy operation.

Boxer Industry — plasma arc

Safety problems, massive

consumption

electricity

BASF — fluidized bed reactor
carbon particle section

+ plasma arc

No previous plasma arc section needed. Easy
operation. Homogeneous heating.

SINTEF Kvaerner CB&H process — plasma arc
methane decomposition.

No electricity required. No safety problems
expected due to plasma arc production..

GasPlas — heating gas by microwaves

No electricity required. Easy scale-up to high
capacity.

CMAT energy solution — liquid Sn reactor, in

combination with molten salts

No use of catalysts and lower complexibility
(only one liquid media)

Hazer group Ltd — Iron catalyst fluidized bed
reactor

No use of catalyst. No catalyst regeneration.

21



-
l.\ Conclusions

| [008] |

TN DUS TR I A LS | —
ETSII | UPM

* The transition to a low-CO2 society must be as fast as reasonably
achievable: avoiding social, economic and environmental problems, and
IS only possible considering all the available technologies and resources.

* Innovation and technological development may convert natural gas in
part of the solution to control GHG emisions in the short-medium term.

* Natural gas decarbonisation is a technology under development that can
open the possibility to reduce drastically CO2 emissions in the energy
sector and in many other industrial processes.

* Natural gas decarbonisation is easily introduced in the circular economy
by the complete transformation of hydrocarbons into valuable products
as

— Graphitic carbon: Required by traditional industries, as steel manufacturing, and high
tech, as Li-ion batteries, or graphene.

— Hydrogen: chemical processes, as ammonia production, refineries, iron ore reduction,
clean fuel production and energy storage.
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Thanks for your attention!!!
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