Reflections on recent discussions

(Pathways to 2050: Opportunities for the EU - 25 October 2018 at GP office in Brussels and Energetika 14-16 November 2018, St Petersburg) The need / opportunity to complement renewables by decarbonised gas

GAC WS 2 Brussels, 7 December 2018 Ralf Dickel, OIES

Dickel.ralf@t-online.de; +49 173 7138976

PA* and its consequences

PA: keeping well below 2.0°C, if possible – below 1.5°C

- \Rightarrow Keep within a budget of 770 mln t CO₂ eq; use of 42 Gt CO₂ eq/year: time is running
- renewables and energy efficiency will not deliver in time; nuclear limited, problematic
- overshooting 1.5°C, later compensated by BECCS ** a mortgage on the future

=> fossil fuels have to be decarbonised quickly and on a large scale

(disparity of the supply and demand pattern of electric renewables => balance by electrolysis of surplus power to H_2 , use the existing CH_4 system for transportation and storage; some energy to be delivered as molecules, not by wire => need for power - **AND** H_2 infrastructure)

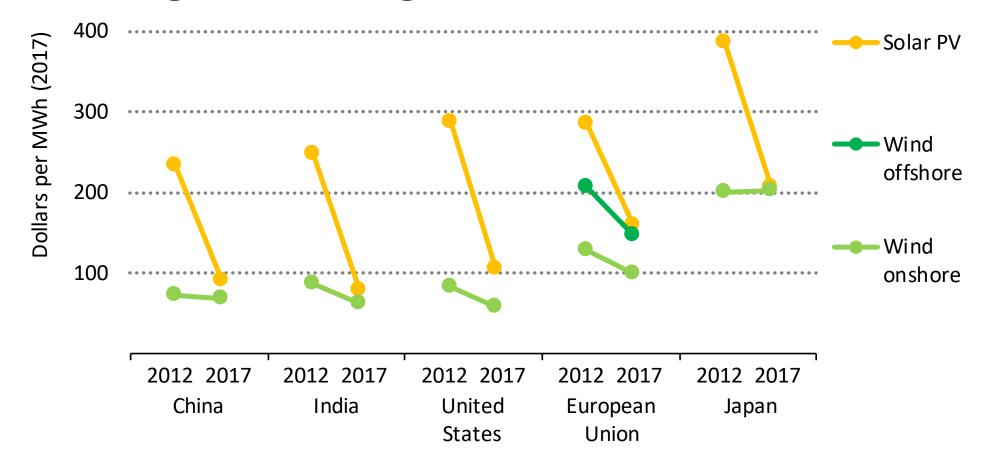
=> decarbonisation pre-combustion*** of hydrocarbons to H_{2} ;

large scale => by MSR**** with large-scale disposal of CO_2

 \Rightarrow Fast system transformation from CH₄ to H₂ and push for large-scale carbon capture Questions: who has to take the initiative, who has to pay, how to finance?

* Sustainable atmosphere under the Paris Agreement implies carbon-free energy, not necessarily renewable, as long-term sustainable energy

****** BECCS: bioenergy with carbon capture and storage


*** post-combustion produces energy as power, not as molecules

**** MSR: methane steam reforming, the only available large-scale technology

Developments 2000-2016

		2000	2016
Total primary energy dem	and (Mtoe)	10035	13760
of which:			
- Coal		2311	3755
- Oil		3670	4388
- Gas		2071	3007
- Nuclear		676	681
- Hydro		225	350
- Bioenergy*		1023	1354
- other renewab	le (Mtoe)	60	225
Share of fossil fuel (%)		80%	81%
CO ₂ emissions (Gt)		23.0	32.1
*includes traditional biom	าลรร		

Levelised costs of electricity by selected technologies and regions, 2012-2017

Solar PV has seen the biggest cost reductions in utility-scale renewables with cost cuts up to 70% in major markets

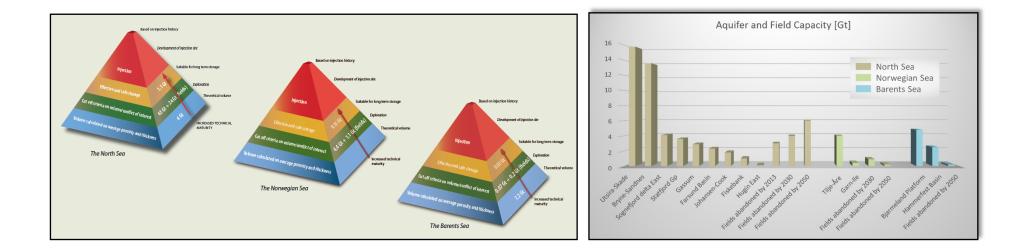
Seasonal gas demand in the European Union in the New Policies Scenario, 2040 bc 60 2017 50 **Peakload power** 40 **Baseload power** 30 **Buildings** 20 10 Industry Other Aug Sep Oct Jan Feb Mar Apr May Jun Jul Nov Dec

Despite a 50% increase in peak gas demand in the electricity sector, the efficiency-driven drop in consumption for space heating leads to an overall decline in peak demand

IPCC Special Report on Global Warming of 1.5°C

Global indicators	P1	P2	Р3	P4
Pathway classification	No or low overshoot	No or low overshoot	No or low overshoot	High overshoot
CO ₂ emission change in 2030 (% rel to 2010)	-58	-47	-41	4
→ in 2050 (% rel to 2010)	-93	-95	-91	-97
Kyoto-GHG emissions* in 2030 (% rel to 2010)	-50	-49	-35	-2
→ in 2050 (% rel to 2010)	-82	-89	-78	-80
Final energy demand** in 2030 (% rel to 2010)	-15	-5	<mark>17</mark>	39
→ in 2050 (% rel to 2010)	-32	2	<mark>21</mark>	44
Renewable share in electricity in 2030 (%)	60	58	48	25
→ in 2050 (%)	77	81	63	70
Primary energy from gas in 2030 (% rel to 2010)	-25	-20	<mark>33</mark>	37
→ in 2050 (% rel to 2010)	-74	-53	<mark>21</mark>	-48
Primary energy from non-biomass renewables in 2030 (% rel to 2010)	430	470	315	110
→ in 2050 (% rel to 2010)	832	1327	878	1137
Cumulative CCS until 2100 (GtCO ₂)	0	348	<mark>687</mark>	1218
\rightarrow of wich BECCS (GtCO ₂)	0	151	<mark>414</mark>	1191

* Kyoto-gas emissions are based on SAR GWP-100


** Changes in energy demand are associated with improvements in energy efficiency and behaviour change

SAR: Second Assessment Report, GWP: Global Warming Potential, from IPCC 2018 SPM, p. 13

Reflections: Norway / Equinor as gas producing country / company

- Motivation: gas producers hit twice by shrinking volumes: lower volume and price => look to preserve sales volumes in form of H₂
- Equinor: H₂ projects, developed together with customers, taking back the CO₂ from MSR (by ship / for UK by pipeline)
- 40+ Gt of CO₂ storage potential in the Norwegian North Sea alone (Germany according to Bundesanstalt f
 ür Geowissenschaften und Rohstoffe: 20 +/- 8 Gt of CO₂)
- Beyond CO₂ from Norway's gas supplies (125 bcm/year corresponding to ca. 0.25 Gt/year), BUT why should Norway do the job for others?
- CO₂ storage: proven and simple technology (reinjecting a nonflammable, non-toxic liquid); has to be monitored

CO₂ Storage Capacity Norwegian Continental Shelf

How much is a Gigaton?

		tonne = one metric tonne = 1000 kg Mt = one megatonne = 10 ⁶ tonne					Volume/weight	Energy	CO ₂ formed	
	1 Gt	= one gigatonne	= 1000 Mt	0	Natural gas	532 GSm ³	5300 TWh	1 Gt		
1					Diesel	372 Mt	3800 TWh	1 Gt		
					Coal	413 Mt	2800 TWh	1 Gt	NPD	

Reflections: NL/Gasunie

- Testing / projects to convert the increasingly idle L-Gas infrastructure to H₂
- Insular solutions, to be linked up, also with existing H₂-system
- CO₂ from MSR exported to Norway

BUT: little financial room as regulated business, slowing down development

Reflections on: (i) split of work between EU and Russia regarding PA and (ii) cooperation

(i) PA Article 3: Each country commits by NDC to ambitious measures, checked every 5 years (blame and shame) with ratcheting up

Methane is about 50% of Russian PEC, decarbonisation / H_2 may become necessary; Russia may first look at cheaper options (tapping the bounty of energy efficiency)

(ii) Cooperation

- in knowledge sharing (mainly on H₂ technology infrastructure and application)
- In developing the H₂ market in the EU

Reflections related to gas imports

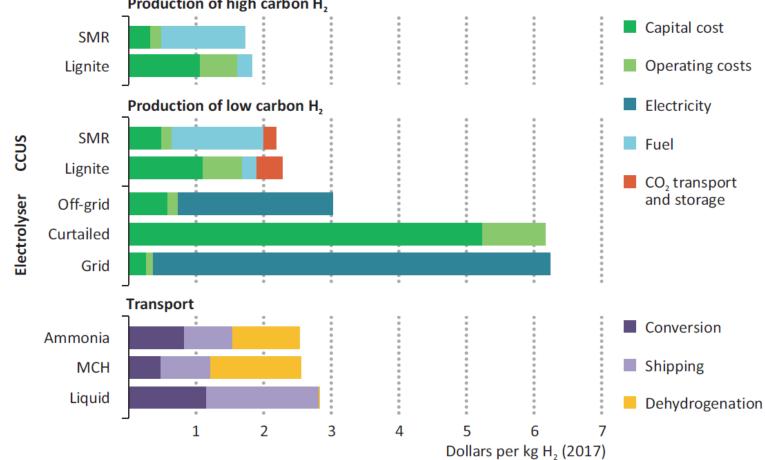
EU looking to decarbonise gas (also in the interest of gas producers to remain in the game)

- Carbon-free H₂ from CH₄ via MSR and CCUS: a volume issue for CO₂ disposal and a netback issue for CH₄
- Process and location: a question of optimisation (of netback value at the well head) along the chain: process, location and flexibility
- Why should Russia solve the EU's political problem with CO₂ storage?
- Methane cracking vs. MSR: volume consequences and speed of progress; enough Russian gas available to back either process
- GP bound long term by contractual quality provisions (beyond spec of infrastructure)
- GP vs Equinor: factual differences; Equinor pioneer, GP follower?

H₂ vs CH₄-export: principles remain, details change

- Paris Agreement does not impose an obligation / restriction regarding the export of resources, UNGA resolution 1802 of 1963 remains valid
- Customers pay (also for decarbonised H₂), thereby for decarbonisation
- Subject to competition / markets
- Costs to produce the product (decarbonised H₂) and bring it to the market are borne along the chain; finally deducted from the revenue ex wellhead (determining the resource rent)

=>


different (higher) value for a different product in the market (determined by competition / markets for H_2 and its infrastructure)

but also higher costs to produce / deliver H₂ compared to CH₄)

Net back in an H2 System

Renewab	le H2 from electrolysis			Fee	d	H2 fro	m decarbonizin	g gas				
				into								
domestic	H2 from renewable electro	lysis	=>	H2	<=				<= transport of H2	H2 <=	CH 4 by MSR	CH4 prod
									= 90% of CH4	local h	eat losses 25%	
				S				b		dispos	al of CO2*	
imported	H2 from renewable electro	lysis <mark>bo</mark>	r =>	y		via CH	4 storage	0	<= transport of CH4			CH4 prod
	(H2 => NH3 => H2) *	de	r	S		or dire	ct feed into	r				
				t	<=	H2 <=	CH 4 by MSR	d				
				е		local h	eat losses 25%	e				
				m		dispos	al of CO2	r				
				or	<=				<= transport of H2	H2 <=	CH 4 by MCr	CH4 prod
				Μ					= 90% of CH4	local h	eat losses 13%	
				a						dispos	al as C* (40% of En)	
				r k		via CH	4 storage	-	<= transport of 2 x CH4			CH4 prod
MSR	Methane Steam reforming			е			ct feed into		•			
MCr	Methane Cracking			t	<=	H2 <=	CH 4 by MCr					
						local h	eat losses 13%					
* needs ce	ertification					dispos	al of 40% as C					

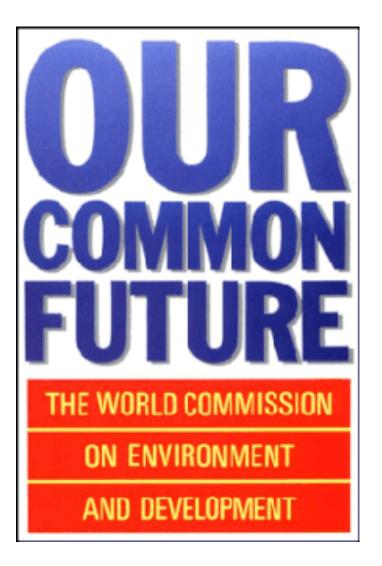
Costs of selected options to produce H₂ in Australia and transport it to Japan in New Policies Scenario, 2040 Production of high carbon H.

SMR equipped with CCUS is the cheapest source of low-carbon hydrogen, but electrolysers using off-grid renewables could provide hydrogen for $\frac{3}{kg}$ H₂ in 2040

Reflections on the players' role

DO NOT wait for Godot (= decarbonisation technology to be free of costs)!!

Technology neutrality: there will be a mix between renewables (Wind , PV) and decarbonised hydrocarbons, the balance to be sorted out by competition, based on an effective price signal for CO_2 (i.e. reflecting cost level)

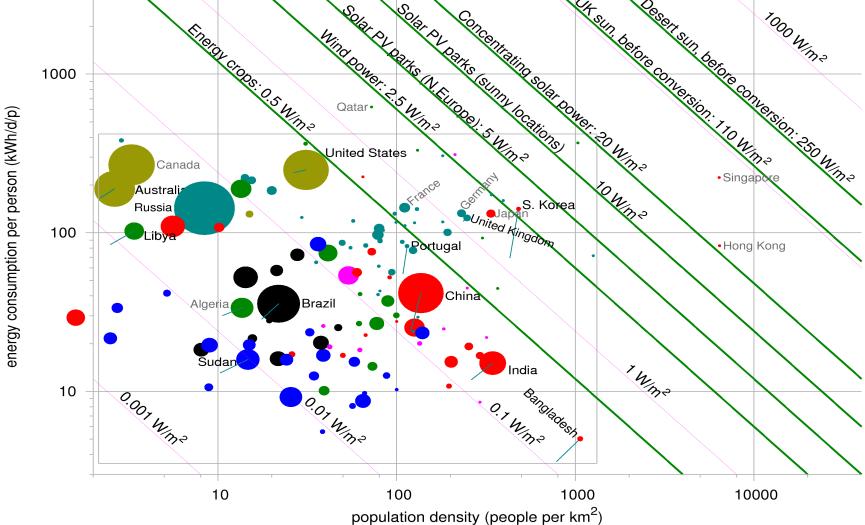

- Governments of resource owning countries: promote transformation to preserve market position, accept netback consequences
- Commercial oil and gas companies: profit for shareholders, some profit spent to secure long-term business / advertisement
 BUT buy back shares or modify business always an option
- Governments of consuming / importing countries: provide for effective market signals reflecting the substantial costs of decarbonisation; otherwise only nonaction will be optimised
- Regulated infrastructure: regulated asset base with regulated profit, depreciation time to make it financeable (initiative has to come from politics)
- C / CO₂ disposal: may be a regulated business; but cross-border issues, certification needed

Reflections on who pays?

- Putting a price on CO₂ high enough to trigger developments / for fuel switching
- In the end, consumers pay extra costs for a decarbonised world
- De-carbonization / a price on CO₂ may change resource rents included in present energy price level (for fuel and gas):
 - Example US gas-coal: no extra costs, rent for low-carbon fuel but paid out of rent for liquid fuel, as gas is a must-sell by-product
 - Now the UK mixture of floor price for EUA and LCPD => gas exporters benefit by volume
 - Renewables put a ceiling on the CO₂ price at a level for switching from gas to renewables
- If all countries make similar efforts to decarbonise: little distortion from different decarbonisation approaches
- In the future: CO_2 -free renewable fuel (H₂) likely to become a yardstick for other CO_2 -free fuel
- => bringing the costs of electric H₂ down, brings overall costs of decarbonisation down, inclusive of resource rent for decarbonised methane

BUT: (substantial) decarbonisation costs, needs effective signals initiated by governments (can be income-neutral CO₂ taxes; must be flanked by social policies)

Time is of the essence! And cooperation!


• We live in an era in the history of nations where there is greater need than ever for co-ordinated political action and responsibility

• Perhaps our most urgent task is to persuade nations of the need to return to multilateralism

From the Foreword to Our Common Future, World Commission on Environment and Development, Gro Harlem Brundtland, Oslo, **20 March 1987**

Reserve Slides

Sol lucet omnibus: but PV insufficient to meet the carbon budget on time

Three cases: electric renewables and hydrogen

	Pure electric system	Hydrogen only fromHydrogen also from natural gas and electrolyelctrolysis		ysis (and import)			
		surplus wind / PV	MSR		Methane cracking		
use of gas infrastructure	no	yes	yes		yes		
use of gas resources	no	no	yes		yes		
C / CO ₂ disposal	no	no	CO ₂ disposal		use / dispose of C		
where?	n.a.	n.a.	upstream	downstream	upstream	downstream	
intermittence (surplus) power	regulate down	use of gas storage for H ₂ but only 30% capacity	use of gas storage for H ₂ but only 30% capacity		use of gas storage for H ₂ but only 30% capacity		
intermittence (deficit) power	remaining fossil power	use of H ₂ from storage for	use of stored H ₂	use of stored H ₂	use of stored H ₂	use of stored H ₂	
	with CCS?	power from H ₂	for power from H ₂	plus decarb CH ₄	for power from H ₂	plus decarb CH ₄	
implication gas import structure	becomes idle	becomes idle	conversion to H ₂	remains	conversion to H ₂	remains, but 2x capacity needed	
replacing domestic gas supply	add system equivalent	all gas system changed to H ₂	all gas system	system partially	all gas system	system partially	
	to gas system	H ₂ storage (only 30%)	changed to H ₂	changed to H ₂	changed to H ₂	changed to H ₂	
	duplicating gas system	conversion of system					
		and appliances					

Properties

\mathbf{CH}_4

• GCV: 889 kJ/mol

Relevant for energy stored

• Wobbe Index: 53.45 MJ/Nm³

Relevant for energy transportation capacity

H₂

- GCV: 286 kJ/mol
- = 32% of CH₄
- Wobbe Index: 48.34 MJ/Nm³
- = 90% of methane

(L-Gas: up to 46,8 MJ/Nm³)

- More compression needed
- More aggressive then CH₄
- Check compatibility along the chain and in applications

Decarbonising CH₄ pre-combustion by steam reforming: producing H_2 and safely disposing of CO_2

Steam reforming (SR – getting the energy out of C and H_A , less process losses):

- Add H₂O (steam) plus energy (endothermic reaction)
- Global industrial application (ca. 150 bcm/year of natural gas)
- SR possible for C, CH₄, CnH_{2n+2}, i.e. coal, gas and liquid hydrocarbons
 - $C + 2 H_2O => CO_2 + 2 x H_2$ coal: 2 H_2 pro 1 CO_2
 - $2_n \times H_2O + C_n H_{2n+2}$, = n x CO₂ + 2n H₂ + n+1 H₂ hydrocarbons in general:

gas: 4 H₂ pro 1 CO₂ (3 + 1/n) H₂ pro 1 CO₂

• Dispose of CO₂ in geological structures (EOR, EGR, depleted reservoirs, aquifers) Decarbonising CH_4 pre-combustion by methane cracking: producing H_2 and safely disposing of C

Methane cracking: (getting the energy of H₄, less process losses plus getting carbon black)

- KIT process with fluid tin at experimental stage
- Next step TRL 6, using 3 $m^3/h = 25\ 000\ m^3/year$
- => Very substantial scaling up needed
- CH₄ (889 kJ/mol) => C (carbon black) + 2 H₂ (GCV = 2 x 286 kJ/mol)
- Use of C = carbon black, limited by global market (<10 mln t/year at present), beyond that => dispose of C!
- Energy contained in C is produced (and transported), but lost energetically (40% of energy of CH₄ plus process losses > 50%)

Energy taxation and implicit carbon pricing in Germany, 2016

		Nominal	Implicit	Excl. infrastructure costs*		Excl. counter-
		tax rate	tax rate	€ 15b p.a.	€ 35b p.a.	factual invest**
		€ per unit	€ per t CO ₂	€ per t CO ₂	€ per t CO ₂	€ per t CO ₂
Gas oil	EUR/1,000 I	61,35	23,03			
Heavy fuel oil (heating)	EUR/t	25,00	7,87			
Heyvy fuel oil (power)	EUR/t	25,00	7,87			
Natural gas (heating)	EUR/MWh	5,50	30,23			
Natural gas (motor fuel)***	EUR/MWh	13,90	76,40	-26,00	-198,20	
LPG (heating)	EUR/100	6,06	20,56			
LPG (motor fuel)***	EUR/100	18,03	61,16	-11,37	-159,73	
Gasoline leaded***	EUR/1,000	721,00	315,90	279,79	134,93	
Gaseline unleaded***	EUR/1,000 I	654,50	286,76	253,99	122,49	
Diesel***	EUR/1,000	470,40	179,06	165,55	35,23	
Coal (non-power)	EUR/GJ	0,33	3,47			
Electricity ETS	EUR/EUA	5,35	5,35			
Electricity tax	EUR/MWh	20,50	22,78			
Electricity surcharges	EUR/MWh	76,84	85,38			45,20
Electricity total	EUR/MWh	102,69	113,51			73,33

Notes: * Considering road infrastructure financing from motor vehicle tax ($\in 8.7b$) and truck toll ($\in 3.1b$). The lower range of infrastructure costs represents the annual investments and the upper range the annuity of total road system costs. - ** Considering a counterfactual investment of 36 \in /MVVh. - *** The implicit CO tax rate for motor fuels covers also other

significant transport externalities (other pollutants, noise, health impacts) which are less significant for other energies.

Source: Felix Matthes, Decarbonizing Germany's Power Sector, p. 24; Note d'IFRI, Dec 2017