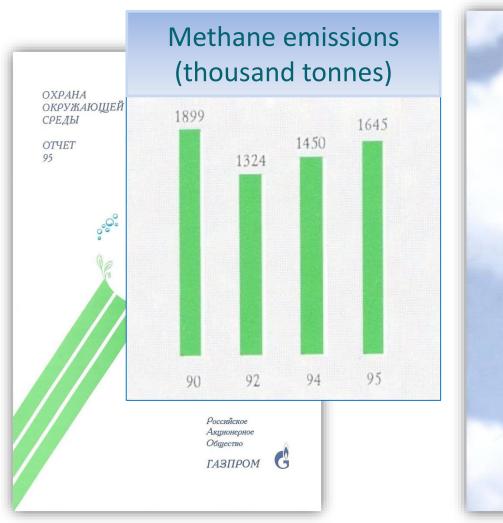
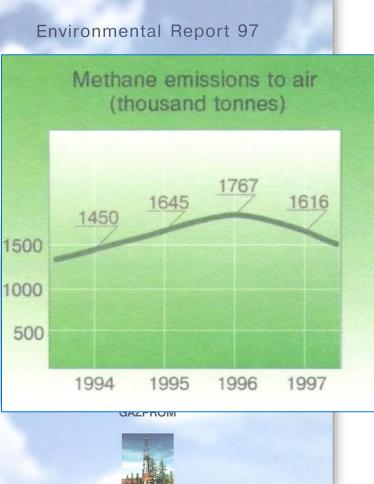
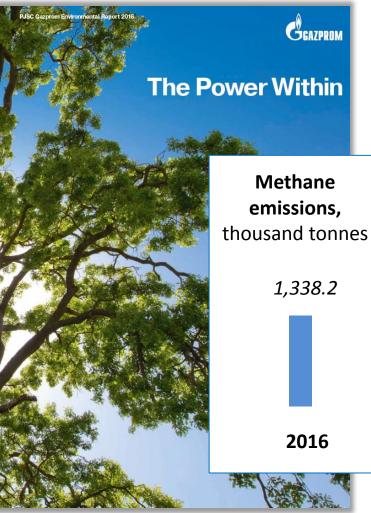


METHANE EMISSIONS ALONG THE GAS VALUE CHAIN

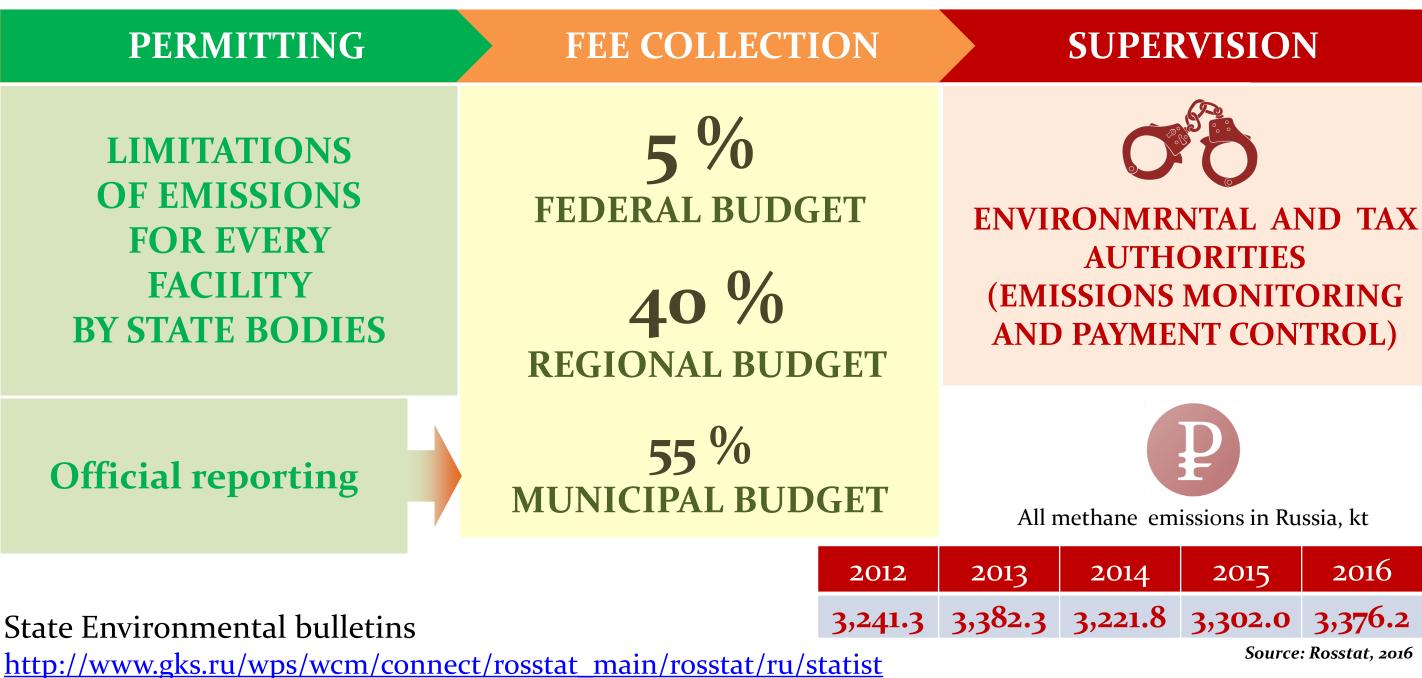



METHANE EMISSIONS REGULATION IN RUSSIA


Toxic Gas

Greenhouse Gas

FEE 🔶 KPI (



Reduction in GHG Intensity CO₂-eq, %

2

ics/publications/catalog/5e901c0042cb5cc99b49bf307f2fa3f8

METHANE EMISSIONS DETECTION, MEASUREMENT AND **ELIMINATION**

EVALUATING METHANE EMISSIONS AT GAZPROM FACILITIES WITH FOREIGN PARTNERS

YEAR	PARTNERS	SUBJECT OF INVEST
1995	US EPA	1 compressor station; 1 compressor shop
1996-1997	Ruhrgas (Open Grid Europe)	3 complex gas treatment plants; 2 well c stations; 6 compressor shops; 5,000 km
2002-2003	Ruhrgas (Open Grid Europe), Wuppertal Institute for Climate, Environment and Energy, Max Planck Institute for Chemistry	5 compressor stations; 10 compressor sh routes of mains
2004-2005	Sumitomo Corporation, Agra	1 compressor station; 3 compressor shop of mains; 5 pipeline branches; 5 gas distr
2006, 2008	Sojitz Corporation	2 compressor stations; 4 compressor sho of mains; 100 valve nodes; 80 valve node gas distribution stations, 4 gas measuri
2010	Global methane initiative, US EPA	162 km of gas main pipeline; 2 compress
2011	GDF-SUEZ (ENGIE)	1 compressor shop; 2 junction points
	Compio	
2013	Gasunie	1 shop; 10 valve nodes

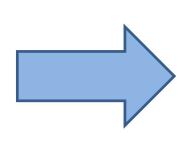
TIGATIONS

р

clusters; 3 compressor n of linear routes of mains

shops; 4,000 km of linear

ops; 750 km of linear routes stribution stations


hops; 600 km of linear routes les of pipeline branches; 32 ring stations

sor shops; 41 valve nodes

Modern methods of determining the age and the source of methane (CH₄) are based on the registration of stable isotopes carbon-12 and carbon-13 and its natural ratio 98.92% and 1.08%.

Siberian gas fields have isotope ratio, which is would be unlikely to produce the shift observed

Isotopic studies indicate that the methane rise is a result of **increased emissions** from biogenic sources, e.g., extension of wetland and expansion in the number of methane emissions sources in agriculture: ruminants and rice fields

https://www.repository.cam.ac.uk/bitstream/handle/1810/261156/Nisbet et al-2016-Global_Biogeochemical_Cycles-VoR.pdf?sequence=1&isAllowed=y

Taking samples: US National Oceanic and Atmospheric Administration (NOAA) Isotopic analysis: Institute of Arctic and Alpine Research, Royal Holloway, University of London, University of Heidelberg

Russian natural gas is not the source of methane growth in the atmosphere

IPCC EMISSION FACTORS

Intergovernmental Panel on Climate Change

2006 IPCC Guidelines for National Greenhouse Gas Inventories

Volume 2

Energy

Edited by Simon Eggleston, Leandro Buendia, Kyoko Miwa, Todd Ngara and Kiyoto Tanabe

IPCC National Greenhouse Gas Inventories Programme

TIER 1 EMISSION FACTORS FOR FUGITIVE EMISSIONS (INCLUDING VENTING AND FLARING) FROM OIL AND GAS OPERATIONS

IN DEVELOPED COUNTRIES^{a,b}

TABLE 4.2.4

Category	Sub- category ^c	Emission source	IPCC Code	СҢ4		CO ₂ ¹			
				Value	Uncertainty (% of value)	Value	Uncertainty (% of Value)	Units of measure	
Gas Production	All	Fugitives ^d	1.B.2.b.iii.2	3.8E-04 to 2.3E-03	±100%	1.4E-05 to 8.2E-05	±100%	Gg per 10 ⁶ m ³ gas production	
		Flaring ^e	1.B.2.b.ii	7.6E-07	±25%	1.2E-03	±25%	Gg per 10 ⁶ m ³ gas production	
Gas Processing	Sweet Gas Plants	Fugitives	1.B.2.b.iii.3	4.8E-04 to 10.3E-04	±100%	1.5E-04 to 3.2E-04	±100%	Gg per 10 ⁶ m ³ raw gas feed	
		Flaring	1.B.2.b.ii	1.2E-06	±25%	1.8E-03	±25%	Gg per 10 ⁶ m ³ raw gas feed	
	Sour Gas Plants	Fugitives	1.B.2.b.iii.3	9.7E-05	±100%	7.9E-06	±100%	Gg per 10 ⁶ m ³ raw gas feed	
		Flaring	1.B.2.b.ii	2.4E-06	±25%	3.6E-03	±25%	Gg per 10 ⁶ m ³ raw gas feed	
		Raw CO ₂ Venting	1.B.2.b.i	NA	NA	6.3E-02	-10 to +1000%	Gg per 10 ⁶ m ³ raw gas feed	
Gas Transmission & Storage	Transmission	Fugitives ^{fk}	1.B.2.b.iii.4	6.6E-05 to 4.8E-04	±100%	8.8E-07	±100%	Gg per 10 ⁶ m ³ of marketable gas	
		Venting ^{gk}	1.B.2.b.i	4.4E-05 to 3.2E-04	±75%	3.1E-06	±75%	Gg per 10 ⁶ m ³ of marketable gas	
	Storage	All ^k	1.B.2.b.iii.4	2.5E-05	-20 to +500%	1.1E-07	-20 to +500%	Gg per 10 ⁶ m ³ of marketable gas	

IPCC EMISSION FACTORS

Intergovernmental Panel on Climate Change

2006 IPCC Guidelines for National Greenhouse Gas Inventories

Volume 2

Energy

Edited by Simon Eggleston, Leandro Buendia, Kyoko Miwa, Todd Ngara and Kiyoto Tanabe

IPCC National Greenhouse Gas Inventories Programme

İGES

TABLE 4.2.5

IN DEVELOPING COUNTRIES AND COUNTRIES WITH ECONOMIES IN TRANSITION^{a,b}

	Sub-category ^c	Emission source	IPCC Code	CH ₄		CO ₂ ⁱ			
Category				Value	Uncertainty (% of value)	Value	Uncertainty (% of value)	Units of measure	
Gas Production	A11	Fugitives ^d	1.B.2.b.iii.2	3.8E-04 to 2.4E-02	-40 to +250%	1.4E-05 to 1.8E-04	-40 to +250%	Gg per 10 ⁶ m ³ gas production	
		Flaring ^e	1.B.2.b.ii	7.6E-07 to 1.0E-06	±75%	1.2E-03 to 1.6E-03	±75%	Gg per 10 ⁶ m ³ gas production	
Gas Processing	Sweet Gas Plants	Fugitives	1.B.2.b.iii.3	4.8E-04 to 1.1E-03	-40 to +250%	1.5E-04 to 3.5E-04	-40 to +250%	Gg per 10 ⁶ m ³ raw gas feed	
		Flaring	1.B.2.b.ii	1.2E-06 to 1.6E-06	±75%	1.8E-03 to 2.5E-03	±75%	Gg per 10 ⁶ m ³ raw gas feed	
	Sour Gas Plants	Fugitives	1.B.2.b.iii.3	9.7E-05 to 2.2E-04	-40 to +250%	7.9E-06 to 1.8E-05	-40 to +250%	Gg per 10 ⁶ m ³ raw gas feed	
Gas Transmission & Storage	Transmission	Fugitives ^f	1.B.2.b.iii.4	16.6E-05 to 1.1E-03	-40 to +250%	8.8E-07 to 2.0E-06	-40 to +250%	Gg per 10 ⁶ m ³ of marketable gas	
		Venting ^g	1.B.2.b.i	4.4E-05 to 7.4E-04	-40 to +250%	3.1E-06 to 7.3E-06	-40 to +250%	Gg per 10 ⁶ m ³ of marketable gas	
	Storage	A11	1.B.2.b.iii.4	2.5E-05 to 5.8E-05	-20 to +500%	1.1E-07 to 2.6E-07	-20 to +500%	Gg per 10 ⁶ m ³ of marketable gas	

TIER 1 EMISSION FACTORS FOR FUGITIVE EMISSIONS (INCLUDING VENTING AND FLARING) FROM OIL AND GAS OPERATIONS

9

COUNTRY-SPECIFIC EMISSION FACTORS DEVELOPMENT

Организация Объединенных Наций По вопросам образования науки и культуры Устойчивое Энергетическое Развитие

Международный центр под Эгидой ЮНЕСКО

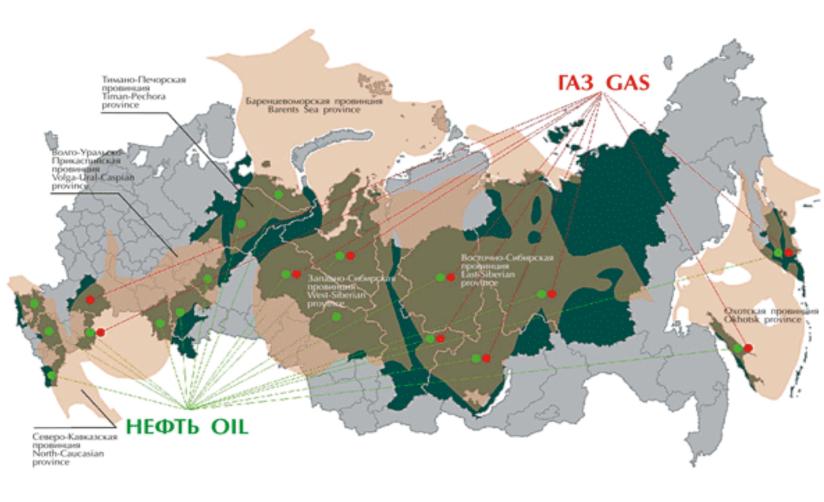
The development of country-specific emission factors and parameters for greenhouse gas inventory in the Russian oil and gas sector was initiated

under the support of

- Ministry of Energy of the Russian Federation (contract 16/0411.3070390019.241/02/170 of 21-09-2016)
- Federal Service for Hydrometeorology and Environment Monitoring of the Russian **Federation**

AFFHTCTBO» МИНИСТЕРСТВА ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

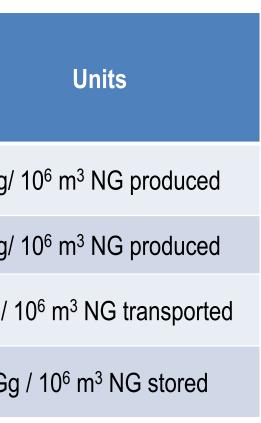
государственное бюджетное учреждение «РОССИЙСКОЕ ЭНЕРГЕТИЧЕСКОЕ

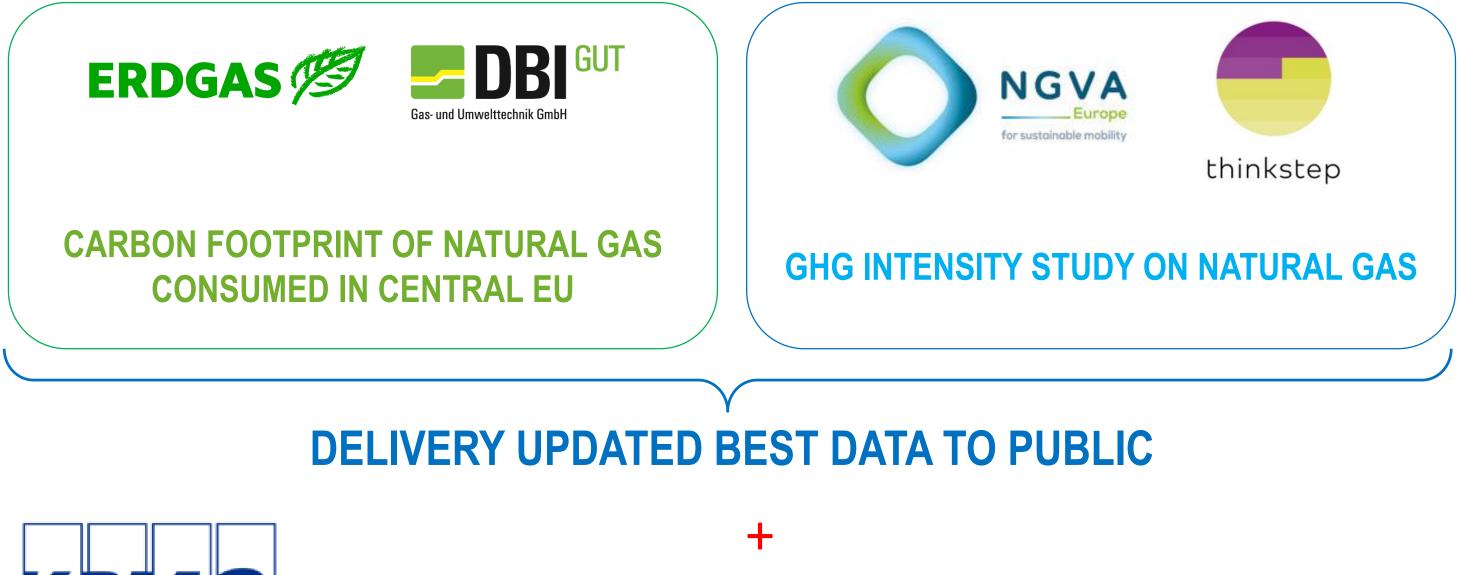

Федеральное

- Data from oil and gas fields and infrastructure operated by main oil and gas companies were used
- CO₂ and CH₄ emission factors were developed for leakage and flaring of associated petrol gas and leakage on natural gas for their production and transport operations
- The representative average parameters for associated petrol and natural gas were developed along with the national emission factors

The work was performed in accordance with general IPCC requirements and procedures

[IPCC, 2006]


Source: Rosnedra (2016)


Emission category in gas sector	Emission type	Emission factor value and its uncertainty			
		CH₄	CO ₂		
NG production and processing (well	Leakage and venting	2.13•10 ⁻⁴ ±50%	3.92•10 ⁻⁶ ±50%	Gg/	
testing and servicing is included)	Flaring	1.12•10 ⁻⁷ ±50%	1.95•10 ⁻⁴ ±50%	Gg/	
NG transport	Leakage and venting	1.93•10 ⁻³ ±50%	1.68•10 ⁻⁵ ±50%	Gg /	
NG underground storage	Leakage and venting	3.73•10 ⁻⁴ ±50%	2.11•10 ⁻⁶ ±50%	Gę	

GHG inventory with national emissions factors enabled for:

- \succ Enhancing accuracy of estimates of fugitive emissions;
- First estimates lower than those with IPCC defaults (left graphs) by:
 - \checkmark 20.1 per cent for gas sector (top right graph);
 - ✓ 38.2 per cent for oil sector (bottom left graph)
- > 4.8 times reduced national inventory uncertainty

FINISHING VERIFICATION OF GAZPROM GHG EMISSIONS

THANK YOU FOR YOUR ATTENTION!

V INTERNATIONAL CONFERENCE "ENVIRONMENTAL SAFETY IN THE GAS INDUSTRY"

Moscow, December 5-6, 2017 contact: M_Plotnikova@vniigaz.gazprom.ru

